SLM
This commit is contained in:
22
Dockerfile
Normal file
22
Dockerfile
Normal file
@@ -0,0 +1,22 @@
|
||||
|
||||
# Use an official Python runtime as a parent image
|
||||
FROM python:3.11-slim
|
||||
|
||||
# Set the working directory in the container
|
||||
WORKDIR /app
|
||||
|
||||
# Copy the requirements file into the container at /app
|
||||
COPY requirements.txt .
|
||||
|
||||
# Install any needed packages specified in requirements.txt
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
|
||||
# Copy the rest of the application's code into the container
|
||||
COPY . .
|
||||
|
||||
# Expose the port the app runs on
|
||||
EXPOSE 8000
|
||||
|
||||
# Define the command to run the application
|
||||
# We use the PORT environment variable, defaulting to 8000
|
||||
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
|
||||
92
api.py
Normal file
92
api.py
Normal file
@@ -0,0 +1,92 @@
|
||||
import os
|
||||
import uvicorn
|
||||
from fastapi import FastAPI, Body
|
||||
from fastapi.staticfiles import StaticFiles
|
||||
from fastapi.responses import FileResponse
|
||||
from pydantic import BaseModel
|
||||
import sys
|
||||
|
||||
# Import core LLM logic
|
||||
from llm import load_or_train_model, generate_text, SOURCES_DIR
|
||||
|
||||
# --- Configuration ---
|
||||
# Models to pre-load on startup
|
||||
PRELOAD_N_GRAMS = [2, 3, 4, 5]
|
||||
UI_DIR = "ui"
|
||||
|
||||
# --- Globals ---
|
||||
# Cache for loaded models: {n: model}
|
||||
MODEL_CACHE = {}
|
||||
|
||||
# --- Pydantic Models ---
|
||||
class PredictRequest(BaseModel):
|
||||
prompt: str
|
||||
temperature: float = 0.7
|
||||
n: int = 3
|
||||
length: int = 5
|
||||
|
||||
class PredictResponse(BaseModel):
|
||||
prediction: str
|
||||
|
||||
# --- FastAPI App ---
|
||||
app = FastAPI()
|
||||
|
||||
def get_model_for_n(n: int):
|
||||
"""
|
||||
Retrieves the model for a specific N from cache, or loads/trains it.
|
||||
"""
|
||||
global MODEL_CACHE
|
||||
if n in MODEL_CACHE:
|
||||
return MODEL_CACHE[n]
|
||||
|
||||
print(f"Loading/Training model for N={n}...")
|
||||
model = load_or_train_model(SOURCES_DIR, n)
|
||||
MODEL_CACHE[n] = model
|
||||
return model
|
||||
|
||||
@app.on_event("startup")
|
||||
def startup_event():
|
||||
"""
|
||||
On server startup, pre-load models for all specified N-grams.
|
||||
"""
|
||||
print("Server starting up. Pre-loading models...")
|
||||
for n in PRELOAD_N_GRAMS:
|
||||
get_model_for_n(n)
|
||||
print(f"Models for N={PRELOAD_N_GRAMS} loaded. Server is ready.")
|
||||
|
||||
@app.post("/api/predict", response_model=PredictResponse)
|
||||
async def predict(request: PredictRequest):
|
||||
"""
|
||||
API endpoint to get the next word prediction.
|
||||
"""
|
||||
n = max(2, min(request.n, 5))
|
||||
model = get_model_for_n(n)
|
||||
|
||||
if not model:
|
||||
return {"prediction": ""}
|
||||
|
||||
length = max(1, min(request.length, 500))
|
||||
|
||||
prediction = generate_text(
|
||||
model,
|
||||
start_prompt=request.prompt,
|
||||
length=length,
|
||||
temperature=request.temperature
|
||||
)
|
||||
|
||||
return PredictResponse(prediction=prediction)
|
||||
|
||||
# --- Static Files and Root ---
|
||||
app.mount("/ui", StaticFiles(directory=UI_DIR), name="ui")
|
||||
|
||||
@app.get("/")
|
||||
async def read_root():
|
||||
return FileResponse(os.path.join(UI_DIR, "index.html"))
|
||||
|
||||
def run():
|
||||
# Read port from environment variable, default to 8000
|
||||
port = int(os.environ.get("PORT", 8000))
|
||||
uvicorn.run(app, host="0.0.0.0", port=port)
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
13
docker-compose.yml
Normal file
13
docker-compose.yml
Normal file
@@ -0,0 +1,13 @@
|
||||
services:
|
||||
stupid-llm-editor:
|
||||
build: .
|
||||
ports:
|
||||
# Map host port 5432 to container port 8000
|
||||
- "${PORT:-5432}:8000"
|
||||
volumes:
|
||||
- ./sources:/app/sources:ro
|
||||
- ./models:/app/models
|
||||
environment:
|
||||
- PORT=${PORT:-8000}
|
||||
stdin_open: true
|
||||
tty: true
|
||||
188
llm.py
Normal file
188
llm.py
Normal file
@@ -0,0 +1,188 @@
|
||||
import os
|
||||
import random
|
||||
import sys
|
||||
import re
|
||||
import hashlib
|
||||
import pickle
|
||||
from collections import defaultdict, Counter
|
||||
|
||||
SOURCES_DIR = "sources"
|
||||
CACHE_DIR = "models"
|
||||
N_GRAM = 3 # Default N-gram for standalone script use
|
||||
|
||||
def get_dir_checksum(directory):
|
||||
"""
|
||||
Calculates MD5 checksum of all .txt files in the directory to detect changes.
|
||||
"""
|
||||
hash_md5 = hashlib.md5()
|
||||
if not os.path.exists(directory):
|
||||
return None
|
||||
|
||||
files = sorted([f for f in os.listdir(directory) if f.endswith('.txt')])
|
||||
|
||||
for filename in files:
|
||||
filepath = os.path.join(directory, filename)
|
||||
hash_md5.update(filename.encode('utf-8'))
|
||||
with open(filepath, "rb") as f:
|
||||
for chunk in iter(lambda: f.read(4096), b""):
|
||||
hash_md5.update(chunk)
|
||||
|
||||
return hash_md5.hexdigest()
|
||||
|
||||
def train_model(sources_dir, n):
|
||||
"""
|
||||
Trains the N-gram model from scratch.
|
||||
Returns: model object
|
||||
"""
|
||||
print(f"Training new {n}-gram model from sources...")
|
||||
model = defaultdict(Counter)
|
||||
|
||||
files = [f for f in os.listdir(sources_dir) if f.endswith(".txt")]
|
||||
if not files:
|
||||
print("No source files found!")
|
||||
return model
|
||||
|
||||
for filename in files:
|
||||
filepath = os.path.join(sources_dir, filename)
|
||||
try:
|
||||
with open(filepath, 'r', encoding='utf-8') as f:
|
||||
text = f.read()
|
||||
text = re.sub(r'[[.*?]]', '', text)
|
||||
words = text.split()
|
||||
|
||||
if len(words) < n:
|
||||
continue
|
||||
|
||||
context_size = n - 1
|
||||
for i in range(len(words) - context_size):
|
||||
context = tuple(words[i : i + context_size])
|
||||
next_word = words[i + context_size]
|
||||
model[context][next_word] += 1
|
||||
|
||||
except Exception as e:
|
||||
print(f"Error processing {filename}: {e}")
|
||||
|
||||
return model
|
||||
|
||||
def load_or_train_model(sources_dir, n):
|
||||
"""
|
||||
Loads model from its dedicated cache file if checksum matches, otherwise retrains.
|
||||
"""
|
||||
if not os.path.exists(CACHE_DIR):
|
||||
os.makedirs(CACHE_DIR)
|
||||
|
||||
cache_file = os.path.join(CACHE_DIR, f"model_n{n}.pkl")
|
||||
checksum_file = os.path.join(CACHE_DIR, f"checksum.txt") # One checksum for all
|
||||
|
||||
current_checksum = get_dir_checksum(sources_dir)
|
||||
|
||||
# Check if a model for this N exists and if the checksum matches
|
||||
if os.path.exists(cache_file) and os.path.exists(checksum_file):
|
||||
with open(checksum_file, 'r') as f:
|
||||
saved_checksum = f.read()
|
||||
|
||||
if saved_checksum == current_checksum:
|
||||
print(f"Sources unchanged. Loading model N={n} from {cache_file}...")
|
||||
with open(cache_file, 'rb') as f:
|
||||
return pickle.load(f)
|
||||
else:
|
||||
print(f"Sources changed. Global retrain needed. Deleting old models.")
|
||||
for item in os.listdir(CACHE_DIR):
|
||||
os.remove(os.path.join(CACHE_DIR, item))
|
||||
|
||||
print(f"No valid cache found for N={n}. Training...")
|
||||
model = train_model(sources_dir, n)
|
||||
|
||||
print(f"Saving model to {cache_file}...")
|
||||
with open(cache_file, 'wb') as f:
|
||||
pickle.dump(model, f)
|
||||
# Update the global checksum file after a successful train
|
||||
with open(checksum_file, 'w') as f:
|
||||
f.write(current_checksum or "")
|
||||
|
||||
return model
|
||||
|
||||
def generate_text(model, start_prompt, length=100, temperature=1.0):
|
||||
"""
|
||||
Generates text using the N-gram model.
|
||||
"""
|
||||
if not model:
|
||||
return ""
|
||||
|
||||
try:
|
||||
context_size = next(iter(model.keys())).__len__() # Get context size from model keys
|
||||
except StopIteration:
|
||||
return "" # Model is empty
|
||||
|
||||
start_words = start_prompt.split()
|
||||
current_context = None
|
||||
|
||||
if len(start_words) >= context_size:
|
||||
potential_context = tuple(start_words[-context_size:])
|
||||
if potential_context in model:
|
||||
current_context = potential_context
|
||||
|
||||
if current_context is None and start_words:
|
||||
last_word = start_words[-1]
|
||||
candidates = [k for k in model.keys() if k[0] == last_word]
|
||||
if candidates:
|
||||
current_context = random.choice(candidates)
|
||||
|
||||
if current_context is None:
|
||||
current_context = random.choice(list(model.keys()))
|
||||
if not start_prompt:
|
||||
start_prompt = ' '.join(current_context)
|
||||
|
||||
generated_words = []
|
||||
|
||||
for _ in range(length):
|
||||
if current_context not in model or not model[current_context]:
|
||||
current_context = random.choice(list(model.keys()))
|
||||
|
||||
possible_next = list(model[current_context].keys())
|
||||
counts = list(model[current_context].values())
|
||||
|
||||
try:
|
||||
if temperature == 1.0:
|
||||
weights = counts
|
||||
else:
|
||||
weights = [c ** (1.0 / temperature) for c in counts]
|
||||
next_word = random.choices(possible_next, weights=weights, k=1)[0]
|
||||
except (ValueError, IndexError):
|
||||
# Fallback if weights are invalid or no words are possible
|
||||
current_context = random.choice(list(model.keys()))
|
||||
next_word = current_context[0]
|
||||
|
||||
generated_words.append(next_word)
|
||||
current_context = current_context[1:] + (next_word,)
|
||||
|
||||
return " ".join(generated_words)
|
||||
|
||||
def main():
|
||||
if not os.path.isdir(SOURCES_DIR):
|
||||
print(f"Error: Directory '{SOURCES_DIR}' not found.")
|
||||
sys.exit(1)
|
||||
|
||||
model = load_or_train_model(SOURCES_DIR, N_GRAM)
|
||||
print(f"Model ready. (N={N_GRAM}, Keys={len(model)})")
|
||||
|
||||
start_prompt = ""
|
||||
length = 100
|
||||
temperature = 1.0
|
||||
|
||||
args = sys.argv[1:]
|
||||
if not args:
|
||||
start_ctx = random.choice(list(model.keys()))
|
||||
start_prompt = " ".join(start_ctx)
|
||||
else:
|
||||
start_prompt = args[0]
|
||||
if len(args) >= 2: length = int(args[1])
|
||||
if len(args) >= 3: temperature = float(args[2])
|
||||
|
||||
print(f"\n--- Generating (Start: '{start_prompt}', Temp: {temperature}) ---\n")
|
||||
output = start_prompt + " " + generate_text(model, start_prompt, length, temperature)
|
||||
print(output)
|
||||
print("\n-------------------------------------------------------------")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
4
requirements.txt
Normal file
4
requirements.txt
Normal file
@@ -0,0 +1,4 @@
|
||||
|
||||
fastapi
|
||||
uvicorn
|
||||
python-multipart
|
||||
2429
sources/antygona.txt
Normal file
2429
sources/antygona.txt
Normal file
File diff suppressed because it is too large
Load Diff
10139
sources/dziady.txt
Normal file
10139
sources/dziady.txt
Normal file
File diff suppressed because it is too large
Load Diff
17097
sources/faraon.txt
Normal file
17097
sources/faraon.txt
Normal file
File diff suppressed because it is too large
Load Diff
9231
sources/hamlet.txt
Normal file
9231
sources/hamlet.txt
Normal file
File diff suppressed because it is too large
Load Diff
5528
sources/makbet.txt
Normal file
5528
sources/makbet.txt
Normal file
File diff suppressed because it is too large
Load Diff
1034
sources/odprawa-poslow-greckich.txt
Normal file
1034
sources/odprawa-poslow-greckich.txt
Normal file
File diff suppressed because it is too large
Load Diff
16455
sources/ogniem-i-mieczem.txt
Normal file
16455
sources/ogniem-i-mieczem.txt
Normal file
File diff suppressed because it is too large
Load Diff
10851
sources/pan-tadeusz.txt
Normal file
10851
sources/pan-tadeusz.txt
Normal file
File diff suppressed because it is too large
Load Diff
8853
sources/quo-vadis.txt
Normal file
8853
sources/quo-vadis.txt
Normal file
File diff suppressed because one or more lines are too long
7183
sources/romeo-i-julia.txt
Normal file
7183
sources/romeo-i-julia.txt
Normal file
File diff suppressed because it is too large
Load Diff
5782
sources/w-pustyni-i-w-puszczy.txt
Normal file
5782
sources/w-pustyni-i-w-puszczy.txt
Normal file
File diff suppressed because it is too large
Load Diff
6545
sources/zemsta.txt
Normal file
6545
sources/zemsta.txt
Normal file
File diff suppressed because it is too large
Load Diff
54
ui/index.html
Normal file
54
ui/index.html
Normal file
@@ -0,0 +1,54 @@
|
||||
|
||||
<!DOCTYPE html>
|
||||
<html lang="en" class="dark">
|
||||
<head>
|
||||
<meta charset="UTF-8">
|
||||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||||
<title>Stupid LLM Editor</title>
|
||||
<link rel="stylesheet" href="/ui/style.css">
|
||||
</head>
|
||||
<body>
|
||||
<div class="container">
|
||||
<header class="header">
|
||||
<h1 class="header-title">Stupid LLM Editor</h1>
|
||||
<p class="header-subtitle">AI Pair-Programmer for Polish Literature</p>
|
||||
</header>
|
||||
|
||||
<div class="card controls">
|
||||
<div class="control-grid">
|
||||
<div class="control-group">
|
||||
<label for="n-gram">Complexity (N)</label>
|
||||
<select id="n-gram" class="input-base">
|
||||
<option value="2">2 (Bigram)</option>
|
||||
<option value="3" selected>3 (Trigram)</option>
|
||||
<option value="4">4 (Tetragram)</option>
|
||||
<option value="5">5 (Pentagram)</option>
|
||||
</select>
|
||||
</div>
|
||||
<div class="control-group">
|
||||
<label for="temperature">Creativity (Temp): <span id="temp-val">0.7</span></label>
|
||||
<input type="range" id="temperature" min="0.1" max="2.0" step="0.1" value="0.7">
|
||||
</div>
|
||||
<div class="control-group">
|
||||
<label for="length">Length (Words): <span id="length-val">5</span></label>
|
||||
<input type="range" id="length" min="1" max="20" step="1" value="5">
|
||||
</div>
|
||||
</div>
|
||||
<div class="generate-action">
|
||||
<button id="generate-more-btn" class="btn btn-primary">Generate Paragraph</button>
|
||||
</div>
|
||||
</div>
|
||||
|
||||
<div class="card editor-wrapper">
|
||||
<div id="suggestion-overlay"></div>
|
||||
<textarea id="editor" rows="1" spellcheck="false" autofocus placeholder="Start typing... Press Tab to autocomplete."></textarea>
|
||||
</div>
|
||||
|
||||
<footer class="status-bar">
|
||||
<span>Status:</span>
|
||||
<span id="status">Idle</span>
|
||||
</footer>
|
||||
</div>
|
||||
<script src="/ui/script.js"></script>
|
||||
</body>
|
||||
</html>
|
||||
118
ui/script.js
Normal file
118
ui/script.js
Normal file
@@ -0,0 +1,118 @@
|
||||
document.addEventListener('DOMContentLoaded', () => {
|
||||
const editor = document.getElementById('editor');
|
||||
const suggestionOverlay = document.getElementById('suggestion-overlay');
|
||||
const status = document.getElementById('status');
|
||||
|
||||
// Controls
|
||||
const nGramSelect = document.getElementById('n-gram');
|
||||
const tempInput = document.getElementById('temperature');
|
||||
const tempValDisplay = document.getElementById('temp-val');
|
||||
const lengthInput = document.getElementById('length');
|
||||
const lengthValDisplay = document.getElementById('length-val');
|
||||
const generateBtn = document.getElementById('generate-more-btn');
|
||||
|
||||
let currentSuggestion = '';
|
||||
let isFetching = false;
|
||||
let debounceTimer;
|
||||
|
||||
const autoResize = () => {
|
||||
editor.style.height = 'auto';
|
||||
suggestionOverlay.style.height = 'auto';
|
||||
const newHeight = Math.max(360, editor.scrollHeight);
|
||||
editor.style.height = newHeight + 'px';
|
||||
suggestionOverlay.style.height = newHeight + 'px';
|
||||
};
|
||||
|
||||
tempInput.addEventListener('input', () => { tempValDisplay.textContent = tempInput.value; });
|
||||
lengthInput.addEventListener('input', () => { lengthValDisplay.textContent = lengthInput.value; });
|
||||
|
||||
const triggerUpdate = () => {
|
||||
currentSuggestion = '';
|
||||
updateSuggestion();
|
||||
const prompt = editor.value;
|
||||
if (prompt.trim().length > 0) fetchPrediction(prompt);
|
||||
};
|
||||
|
||||
nGramSelect.addEventListener('change', triggerUpdate);
|
||||
tempInput.addEventListener('change', triggerUpdate);
|
||||
lengthInput.addEventListener('change', triggerUpdate);
|
||||
|
||||
const fetchPrediction = async (prompt, customLength = null) => {
|
||||
if (isFetching) return;
|
||||
|
||||
isFetching = true;
|
||||
status.textContent = 'Thinking...';
|
||||
status.classList.add('fetching');
|
||||
|
||||
const n = parseInt(nGramSelect.value);
|
||||
const temperature = parseFloat(tempInput.value);
|
||||
const length = customLength || parseInt(lengthInput.value);
|
||||
|
||||
try {
|
||||
const response = await fetch('/api/predict', {
|
||||
method: 'POST',
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
body: JSON.stringify({ prompt, n, temperature, length }),
|
||||
});
|
||||
|
||||
if (!response.ok) throw new Error('Network response failed');
|
||||
|
||||
const data = await response.json();
|
||||
|
||||
if (customLength) {
|
||||
insertText(data.prediction || '');
|
||||
} else {
|
||||
currentSuggestion = data.prediction || '';
|
||||
updateSuggestion();
|
||||
}
|
||||
|
||||
} catch (error) {
|
||||
console.error('Prediction failed:', error);
|
||||
status.textContent = 'Error';
|
||||
} finally {
|
||||
isFetching = false;
|
||||
status.textContent = 'Idle';
|
||||
status.classList.remove('fetching');
|
||||
}
|
||||
};
|
||||
|
||||
const updateSuggestion = () => {
|
||||
const editorText = editor.value;
|
||||
const space = (editorText.length > 0 && !/\s$/.test(editorText)) ? ' ' : '';
|
||||
suggestionOverlay.textContent = editorText + space + currentSuggestion;
|
||||
};
|
||||
|
||||
const insertText = (text) => {
|
||||
if (!text) return;
|
||||
const space = (editor.value.length > 0 && !/\s$/.test(editor.value)) ? ' ' : '';
|
||||
editor.value += space + text;
|
||||
currentSuggestion = '';
|
||||
updateSuggestion();
|
||||
autoResize();
|
||||
window.scrollTo(0, document.body.scrollHeight);
|
||||
};
|
||||
|
||||
editor.addEventListener('input', () => {
|
||||
autoResize();
|
||||
clearTimeout(debounceTimer);
|
||||
currentSuggestion = '';
|
||||
updateSuggestion();
|
||||
const prompt = editor.value;
|
||||
if (prompt.trim().length === 0) return;
|
||||
debounceTimer = setTimeout(() => fetchPrediction(prompt), 300);
|
||||
});
|
||||
|
||||
editor.addEventListener('keydown', (e) => {
|
||||
if (e.key === 'Tab' && currentSuggestion) {
|
||||
e.preventDefault();
|
||||
insertText(currentSuggestion);
|
||||
fetchPrediction(editor.value);
|
||||
}
|
||||
});
|
||||
|
||||
generateBtn.addEventListener('click', () => {
|
||||
fetchPrediction(editor.value, 50);
|
||||
});
|
||||
|
||||
autoResize();
|
||||
});
|
||||
168
ui/style.css
Normal file
168
ui/style.css
Normal file
@@ -0,0 +1,168 @@
|
||||
|
||||
:root {
|
||||
--background: hsl(0 0% 3.9%);
|
||||
--foreground: hsl(0 0% 98%);
|
||||
--card: hsl(0 0% 12%);
|
||||
--card-foreground: hsl(0 0% 98%);
|
||||
--popover: hsl(0 0% 3.9%);
|
||||
--popover-foreground: hsl(0 0% 98%);
|
||||
--primary: hsl(0 0% 98%);
|
||||
--primary-foreground: hsl(0 0% 9%);
|
||||
--secondary: hsl(0 0% 14.9%);
|
||||
--secondary-foreground: hsl(0 0% 98%);
|
||||
--muted: hsl(0 0% 14.9%);
|
||||
--muted-foreground: hsl(0 0% 63.9%);
|
||||
--accent: hsl(0 0% 14.9%);
|
||||
--accent-foreground: hsl(0 0% 98%);
|
||||
--border: hsl(0 0% 14.9%);
|
||||
--input: hsl(0 0% 14.9%);
|
||||
--ring: hsl(0 0% 83.1%);
|
||||
--radius: 0.5rem;
|
||||
}
|
||||
|
||||
body {
|
||||
background-color: var(--background);
|
||||
color: var(--foreground);
|
||||
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif;
|
||||
margin: 0;
|
||||
padding: 2rem;
|
||||
}
|
||||
|
||||
.container {
|
||||
max-width: 800px;
|
||||
margin: 0 auto;
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 1.5rem;
|
||||
}
|
||||
|
||||
.header {
|
||||
text-align: center;
|
||||
}
|
||||
.header-title {
|
||||
font-size: 2rem;
|
||||
font-weight: 700;
|
||||
letter-spacing: -0.02em;
|
||||
margin: 0;
|
||||
}
|
||||
.header-subtitle {
|
||||
color: var(--muted-foreground);
|
||||
font-size: 1rem;
|
||||
margin-top: 0.25rem;
|
||||
}
|
||||
|
||||
.card {
|
||||
background-color: var(--card);
|
||||
border: 1px solid var(--border);
|
||||
border-radius: var(--radius);
|
||||
padding: 1.5rem;
|
||||
}
|
||||
|
||||
.controls {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 1.5rem;
|
||||
}
|
||||
.control-grid {
|
||||
display: grid;
|
||||
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
||||
gap: 1rem;
|
||||
}
|
||||
|
||||
.control-group {
|
||||
display: flex;
|
||||
flex-direction: column;
|
||||
gap: 0.75rem;
|
||||
}
|
||||
label {
|
||||
font-size: 0.875rem;
|
||||
font-weight: 500;
|
||||
}
|
||||
.input-base {
|
||||
background-color: var(--background);
|
||||
border: 1px solid var(--border);
|
||||
border-radius: calc(var(--radius) - 2px);
|
||||
color: var(--foreground);
|
||||
padding: 0.5rem 0.75rem;
|
||||
height: 2.5rem;
|
||||
}
|
||||
select.input-base {
|
||||
-webkit-appearance: none;
|
||||
appearance: none;
|
||||
padding-right: 2rem;
|
||||
background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='none' stroke='hsl(0 0% 63.9%)' stroke-linecap='round' stroke-linejoin='round' stroke-width='2'%3e%3cpath d='M2 5l6 6 6-6'/%3e%3c/svg%3e");
|
||||
background-repeat: no-repeat;
|
||||
background-position: right 0.5rem center;
|
||||
background-size: 1em 1em;
|
||||
}
|
||||
|
||||
.generate-action {
|
||||
border-top: 1px solid var(--border);
|
||||
padding-top: 1.5rem;
|
||||
text-align: right;
|
||||
}
|
||||
.btn {
|
||||
display: inline-flex;
|
||||
align-items: center;
|
||||
justify-content: center;
|
||||
border-radius: calc(var(--radius) - 2px);
|
||||
font-size: 0.875rem;
|
||||
font-weight: 600;
|
||||
padding: 0.5rem 1rem;
|
||||
transition: all 0.2s;
|
||||
cursor: pointer;
|
||||
border: none;
|
||||
}
|
||||
.btn-primary {
|
||||
background-color: var(--primary);
|
||||
color: var(--primary-foreground);
|
||||
}
|
||||
.btn-primary:hover {
|
||||
background-color: hsl(0 0% 98% / 0.9);
|
||||
}
|
||||
|
||||
.editor-wrapper {
|
||||
position: relative;
|
||||
padding: 0;
|
||||
}
|
||||
#editor, #suggestion-overlay {
|
||||
position: absolute;
|
||||
top: 0;
|
||||
left: 0;
|
||||
width: 100%;
|
||||
height: 100%;
|
||||
box-sizing: border-box;
|
||||
font-family: 'SF Mono', 'Fira Code', 'Courier New', monospace;
|
||||
font-size: 1rem;
|
||||
line-height: 1.7;
|
||||
background-color: transparent;
|
||||
border: none;
|
||||
overflow: hidden;
|
||||
resize: none;
|
||||
padding: 1.5rem;
|
||||
min-height: 300px;
|
||||
}
|
||||
#editor {
|
||||
z-index: 2;
|
||||
color: var(--foreground);
|
||||
}
|
||||
#editor:focus { outline: none; }
|
||||
#editor::placeholder { color: var(--muted-foreground); }
|
||||
|
||||
#suggestion-overlay {
|
||||
z-index: 1;
|
||||
color: var(--muted-foreground);
|
||||
pointer-events: none;
|
||||
}
|
||||
|
||||
.status-bar {
|
||||
text-align: center;
|
||||
font-size: 0.8rem;
|
||||
color: var(--muted-foreground);
|
||||
display: flex;
|
||||
gap: 0.5rem;
|
||||
justify-content: center;
|
||||
}
|
||||
#status.fetching {
|
||||
color: var(--foreground);
|
||||
}
|
||||
Reference in New Issue
Block a user