This commit is contained in:
2026-01-06 21:02:40 +01:00
commit 85d19cbaad
20 changed files with 101786 additions and 0 deletions

22
Dockerfile Normal file
View File

@@ -0,0 +1,22 @@
# Use an official Python runtime as a parent image
FROM python:3.11-slim
# Set the working directory in the container
WORKDIR /app
# Copy the requirements file into the container at /app
COPY requirements.txt .
# Install any needed packages specified in requirements.txt
RUN pip install --no-cache-dir -r requirements.txt
# Copy the rest of the application's code into the container
COPY . .
# Expose the port the app runs on
EXPOSE 8000
# Define the command to run the application
# We use the PORT environment variable, defaulting to 8000
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]

92
api.py Normal file
View File

@@ -0,0 +1,92 @@
import os
import uvicorn
from fastapi import FastAPI, Body
from fastapi.staticfiles import StaticFiles
from fastapi.responses import FileResponse
from pydantic import BaseModel
import sys
# Import core LLM logic
from llm import load_or_train_model, generate_text, SOURCES_DIR
# --- Configuration ---
# Models to pre-load on startup
PRELOAD_N_GRAMS = [2, 3, 4, 5]
UI_DIR = "ui"
# --- Globals ---
# Cache for loaded models: {n: model}
MODEL_CACHE = {}
# --- Pydantic Models ---
class PredictRequest(BaseModel):
prompt: str
temperature: float = 0.7
n: int = 3
length: int = 5
class PredictResponse(BaseModel):
prediction: str
# --- FastAPI App ---
app = FastAPI()
def get_model_for_n(n: int):
"""
Retrieves the model for a specific N from cache, or loads/trains it.
"""
global MODEL_CACHE
if n in MODEL_CACHE:
return MODEL_CACHE[n]
print(f"Loading/Training model for N={n}...")
model = load_or_train_model(SOURCES_DIR, n)
MODEL_CACHE[n] = model
return model
@app.on_event("startup")
def startup_event():
"""
On server startup, pre-load models for all specified N-grams.
"""
print("Server starting up. Pre-loading models...")
for n in PRELOAD_N_GRAMS:
get_model_for_n(n)
print(f"Models for N={PRELOAD_N_GRAMS} loaded. Server is ready.")
@app.post("/api/predict", response_model=PredictResponse)
async def predict(request: PredictRequest):
"""
API endpoint to get the next word prediction.
"""
n = max(2, min(request.n, 5))
model = get_model_for_n(n)
if not model:
return {"prediction": ""}
length = max(1, min(request.length, 500))
prediction = generate_text(
model,
start_prompt=request.prompt,
length=length,
temperature=request.temperature
)
return PredictResponse(prediction=prediction)
# --- Static Files and Root ---
app.mount("/ui", StaticFiles(directory=UI_DIR), name="ui")
@app.get("/")
async def read_root():
return FileResponse(os.path.join(UI_DIR, "index.html"))
def run():
# Read port from environment variable, default to 8000
port = int(os.environ.get("PORT", 8000))
uvicorn.run(app, host="0.0.0.0", port=port)
if __name__ == "__main__":
run()

13
docker-compose.yml Normal file
View File

@@ -0,0 +1,13 @@
services:
stupid-llm-editor:
build: .
ports:
# Map host port 5432 to container port 8000
- "${PORT:-5432}:8000"
volumes:
- ./sources:/app/sources:ro
- ./models:/app/models
environment:
- PORT=${PORT:-8000}
stdin_open: true
tty: true

188
llm.py Normal file
View File

@@ -0,0 +1,188 @@
import os
import random
import sys
import re
import hashlib
import pickle
from collections import defaultdict, Counter
SOURCES_DIR = "sources"
CACHE_DIR = "models"
N_GRAM = 3 # Default N-gram for standalone script use
def get_dir_checksum(directory):
"""
Calculates MD5 checksum of all .txt files in the directory to detect changes.
"""
hash_md5 = hashlib.md5()
if not os.path.exists(directory):
return None
files = sorted([f for f in os.listdir(directory) if f.endswith('.txt')])
for filename in files:
filepath = os.path.join(directory, filename)
hash_md5.update(filename.encode('utf-8'))
with open(filepath, "rb") as f:
for chunk in iter(lambda: f.read(4096), b""):
hash_md5.update(chunk)
return hash_md5.hexdigest()
def train_model(sources_dir, n):
"""
Trains the N-gram model from scratch.
Returns: model object
"""
print(f"Training new {n}-gram model from sources...")
model = defaultdict(Counter)
files = [f for f in os.listdir(sources_dir) if f.endswith(".txt")]
if not files:
print("No source files found!")
return model
for filename in files:
filepath = os.path.join(sources_dir, filename)
try:
with open(filepath, 'r', encoding='utf-8') as f:
text = f.read()
text = re.sub(r'[[.*?]]', '', text)
words = text.split()
if len(words) < n:
continue
context_size = n - 1
for i in range(len(words) - context_size):
context = tuple(words[i : i + context_size])
next_word = words[i + context_size]
model[context][next_word] += 1
except Exception as e:
print(f"Error processing {filename}: {e}")
return model
def load_or_train_model(sources_dir, n):
"""
Loads model from its dedicated cache file if checksum matches, otherwise retrains.
"""
if not os.path.exists(CACHE_DIR):
os.makedirs(CACHE_DIR)
cache_file = os.path.join(CACHE_DIR, f"model_n{n}.pkl")
checksum_file = os.path.join(CACHE_DIR, f"checksum.txt") # One checksum for all
current_checksum = get_dir_checksum(sources_dir)
# Check if a model for this N exists and if the checksum matches
if os.path.exists(cache_file) and os.path.exists(checksum_file):
with open(checksum_file, 'r') as f:
saved_checksum = f.read()
if saved_checksum == current_checksum:
print(f"Sources unchanged. Loading model N={n} from {cache_file}...")
with open(cache_file, 'rb') as f:
return pickle.load(f)
else:
print(f"Sources changed. Global retrain needed. Deleting old models.")
for item in os.listdir(CACHE_DIR):
os.remove(os.path.join(CACHE_DIR, item))
print(f"No valid cache found for N={n}. Training...")
model = train_model(sources_dir, n)
print(f"Saving model to {cache_file}...")
with open(cache_file, 'wb') as f:
pickle.dump(model, f)
# Update the global checksum file after a successful train
with open(checksum_file, 'w') as f:
f.write(current_checksum or "")
return model
def generate_text(model, start_prompt, length=100, temperature=1.0):
"""
Generates text using the N-gram model.
"""
if not model:
return ""
try:
context_size = next(iter(model.keys())).__len__() # Get context size from model keys
except StopIteration:
return "" # Model is empty
start_words = start_prompt.split()
current_context = None
if len(start_words) >= context_size:
potential_context = tuple(start_words[-context_size:])
if potential_context in model:
current_context = potential_context
if current_context is None and start_words:
last_word = start_words[-1]
candidates = [k for k in model.keys() if k[0] == last_word]
if candidates:
current_context = random.choice(candidates)
if current_context is None:
current_context = random.choice(list(model.keys()))
if not start_prompt:
start_prompt = ' '.join(current_context)
generated_words = []
for _ in range(length):
if current_context not in model or not model[current_context]:
current_context = random.choice(list(model.keys()))
possible_next = list(model[current_context].keys())
counts = list(model[current_context].values())
try:
if temperature == 1.0:
weights = counts
else:
weights = [c ** (1.0 / temperature) for c in counts]
next_word = random.choices(possible_next, weights=weights, k=1)[0]
except (ValueError, IndexError):
# Fallback if weights are invalid or no words are possible
current_context = random.choice(list(model.keys()))
next_word = current_context[0]
generated_words.append(next_word)
current_context = current_context[1:] + (next_word,)
return " ".join(generated_words)
def main():
if not os.path.isdir(SOURCES_DIR):
print(f"Error: Directory '{SOURCES_DIR}' not found.")
sys.exit(1)
model = load_or_train_model(SOURCES_DIR, N_GRAM)
print(f"Model ready. (N={N_GRAM}, Keys={len(model)})")
start_prompt = ""
length = 100
temperature = 1.0
args = sys.argv[1:]
if not args:
start_ctx = random.choice(list(model.keys()))
start_prompt = " ".join(start_ctx)
else:
start_prompt = args[0]
if len(args) >= 2: length = int(args[1])
if len(args) >= 3: temperature = float(args[2])
print(f"\n--- Generating (Start: '{start_prompt}', Temp: {temperature}) ---\n")
output = start_prompt + " " + generate_text(model, start_prompt, length, temperature)
print(output)
print("\n-------------------------------------------------------------")
if __name__ == "__main__":
main()

4
requirements.txt Normal file
View File

@@ -0,0 +1,4 @@
fastapi
uvicorn
python-multipart

2429
sources/antygona.txt Normal file

File diff suppressed because it is too large Load Diff

10139
sources/dziady.txt Normal file

File diff suppressed because it is too large Load Diff

17097
sources/faraon.txt Normal file

File diff suppressed because it is too large Load Diff

9231
sources/hamlet.txt Normal file

File diff suppressed because it is too large Load Diff

5528
sources/makbet.txt Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

16455
sources/ogniem-i-mieczem.txt Normal file

File diff suppressed because it is too large Load Diff

10851
sources/pan-tadeusz.txt Normal file

File diff suppressed because it is too large Load Diff

8853
sources/quo-vadis.txt Normal file

File diff suppressed because one or more lines are too long

7183
sources/romeo-i-julia.txt Normal file

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

6545
sources/zemsta.txt Normal file

File diff suppressed because it is too large Load Diff

54
ui/index.html Normal file
View File

@@ -0,0 +1,54 @@
<!DOCTYPE html>
<html lang="en" class="dark">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Stupid LLM Editor</title>
<link rel="stylesheet" href="/ui/style.css">
</head>
<body>
<div class="container">
<header class="header">
<h1 class="header-title">Stupid LLM Editor</h1>
<p class="header-subtitle">AI Pair-Programmer for Polish Literature</p>
</header>
<div class="card controls">
<div class="control-grid">
<div class="control-group">
<label for="n-gram">Complexity (N)</label>
<select id="n-gram" class="input-base">
<option value="2">2 (Bigram)</option>
<option value="3" selected>3 (Trigram)</option>
<option value="4">4 (Tetragram)</option>
<option value="5">5 (Pentagram)</option>
</select>
</div>
<div class="control-group">
<label for="temperature">Creativity (Temp): <span id="temp-val">0.7</span></label>
<input type="range" id="temperature" min="0.1" max="2.0" step="0.1" value="0.7">
</div>
<div class="control-group">
<label for="length">Length (Words): <span id="length-val">5</span></label>
<input type="range" id="length" min="1" max="20" step="1" value="5">
</div>
</div>
<div class="generate-action">
<button id="generate-more-btn" class="btn btn-primary">Generate Paragraph</button>
</div>
</div>
<div class="card editor-wrapper">
<div id="suggestion-overlay"></div>
<textarea id="editor" rows="1" spellcheck="false" autofocus placeholder="Start typing... Press Tab to autocomplete."></textarea>
</div>
<footer class="status-bar">
<span>Status:</span>
<span id="status">Idle</span>
</footer>
</div>
<script src="/ui/script.js"></script>
</body>
</html>

118
ui/script.js Normal file
View File

@@ -0,0 +1,118 @@
document.addEventListener('DOMContentLoaded', () => {
const editor = document.getElementById('editor');
const suggestionOverlay = document.getElementById('suggestion-overlay');
const status = document.getElementById('status');
// Controls
const nGramSelect = document.getElementById('n-gram');
const tempInput = document.getElementById('temperature');
const tempValDisplay = document.getElementById('temp-val');
const lengthInput = document.getElementById('length');
const lengthValDisplay = document.getElementById('length-val');
const generateBtn = document.getElementById('generate-more-btn');
let currentSuggestion = '';
let isFetching = false;
let debounceTimer;
const autoResize = () => {
editor.style.height = 'auto';
suggestionOverlay.style.height = 'auto';
const newHeight = Math.max(360, editor.scrollHeight);
editor.style.height = newHeight + 'px';
suggestionOverlay.style.height = newHeight + 'px';
};
tempInput.addEventListener('input', () => { tempValDisplay.textContent = tempInput.value; });
lengthInput.addEventListener('input', () => { lengthValDisplay.textContent = lengthInput.value; });
const triggerUpdate = () => {
currentSuggestion = '';
updateSuggestion();
const prompt = editor.value;
if (prompt.trim().length > 0) fetchPrediction(prompt);
};
nGramSelect.addEventListener('change', triggerUpdate);
tempInput.addEventListener('change', triggerUpdate);
lengthInput.addEventListener('change', triggerUpdate);
const fetchPrediction = async (prompt, customLength = null) => {
if (isFetching) return;
isFetching = true;
status.textContent = 'Thinking...';
status.classList.add('fetching');
const n = parseInt(nGramSelect.value);
const temperature = parseFloat(tempInput.value);
const length = customLength || parseInt(lengthInput.value);
try {
const response = await fetch('/api/predict', {
method: 'POST',
headers: { 'Content-Type': 'application/json' },
body: JSON.stringify({ prompt, n, temperature, length }),
});
if (!response.ok) throw new Error('Network response failed');
const data = await response.json();
if (customLength) {
insertText(data.prediction || '');
} else {
currentSuggestion = data.prediction || '';
updateSuggestion();
}
} catch (error) {
console.error('Prediction failed:', error);
status.textContent = 'Error';
} finally {
isFetching = false;
status.textContent = 'Idle';
status.classList.remove('fetching');
}
};
const updateSuggestion = () => {
const editorText = editor.value;
const space = (editorText.length > 0 && !/\s$/.test(editorText)) ? ' ' : '';
suggestionOverlay.textContent = editorText + space + currentSuggestion;
};
const insertText = (text) => {
if (!text) return;
const space = (editor.value.length > 0 && !/\s$/.test(editor.value)) ? ' ' : '';
editor.value += space + text;
currentSuggestion = '';
updateSuggestion();
autoResize();
window.scrollTo(0, document.body.scrollHeight);
};
editor.addEventListener('input', () => {
autoResize();
clearTimeout(debounceTimer);
currentSuggestion = '';
updateSuggestion();
const prompt = editor.value;
if (prompt.trim().length === 0) return;
debounceTimer = setTimeout(() => fetchPrediction(prompt), 300);
});
editor.addEventListener('keydown', (e) => {
if (e.key === 'Tab' && currentSuggestion) {
e.preventDefault();
insertText(currentSuggestion);
fetchPrediction(editor.value);
}
});
generateBtn.addEventListener('click', () => {
fetchPrediction(editor.value, 50);
});
autoResize();
});

168
ui/style.css Normal file
View File

@@ -0,0 +1,168 @@
:root {
--background: hsl(0 0% 3.9%);
--foreground: hsl(0 0% 98%);
--card: hsl(0 0% 12%);
--card-foreground: hsl(0 0% 98%);
--popover: hsl(0 0% 3.9%);
--popover-foreground: hsl(0 0% 98%);
--primary: hsl(0 0% 98%);
--primary-foreground: hsl(0 0% 9%);
--secondary: hsl(0 0% 14.9%);
--secondary-foreground: hsl(0 0% 98%);
--muted: hsl(0 0% 14.9%);
--muted-foreground: hsl(0 0% 63.9%);
--accent: hsl(0 0% 14.9%);
--accent-foreground: hsl(0 0% 98%);
--border: hsl(0 0% 14.9%);
--input: hsl(0 0% 14.9%);
--ring: hsl(0 0% 83.1%);
--radius: 0.5rem;
}
body {
background-color: var(--background);
color: var(--foreground);
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, Helvetica, Arial, sans-serif;
margin: 0;
padding: 2rem;
}
.container {
max-width: 800px;
margin: 0 auto;
display: flex;
flex-direction: column;
gap: 1.5rem;
}
.header {
text-align: center;
}
.header-title {
font-size: 2rem;
font-weight: 700;
letter-spacing: -0.02em;
margin: 0;
}
.header-subtitle {
color: var(--muted-foreground);
font-size: 1rem;
margin-top: 0.25rem;
}
.card {
background-color: var(--card);
border: 1px solid var(--border);
border-radius: var(--radius);
padding: 1.5rem;
}
.controls {
display: flex;
flex-direction: column;
gap: 1.5rem;
}
.control-grid {
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 1rem;
}
.control-group {
display: flex;
flex-direction: column;
gap: 0.75rem;
}
label {
font-size: 0.875rem;
font-weight: 500;
}
.input-base {
background-color: var(--background);
border: 1px solid var(--border);
border-radius: calc(var(--radius) - 2px);
color: var(--foreground);
padding: 0.5rem 0.75rem;
height: 2.5rem;
}
select.input-base {
-webkit-appearance: none;
appearance: none;
padding-right: 2rem;
background-image: url("data:image/svg+xml,%3csvg xmlns='http://www.w3.org/2000/svg' viewBox='0 0 16 16' fill='none' stroke='hsl(0 0% 63.9%)' stroke-linecap='round' stroke-linejoin='round' stroke-width='2'%3e%3cpath d='M2 5l6 6 6-6'/%3e%3c/svg%3e");
background-repeat: no-repeat;
background-position: right 0.5rem center;
background-size: 1em 1em;
}
.generate-action {
border-top: 1px solid var(--border);
padding-top: 1.5rem;
text-align: right;
}
.btn {
display: inline-flex;
align-items: center;
justify-content: center;
border-radius: calc(var(--radius) - 2px);
font-size: 0.875rem;
font-weight: 600;
padding: 0.5rem 1rem;
transition: all 0.2s;
cursor: pointer;
border: none;
}
.btn-primary {
background-color: var(--primary);
color: var(--primary-foreground);
}
.btn-primary:hover {
background-color: hsl(0 0% 98% / 0.9);
}
.editor-wrapper {
position: relative;
padding: 0;
}
#editor, #suggestion-overlay {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
box-sizing: border-box;
font-family: 'SF Mono', 'Fira Code', 'Courier New', monospace;
font-size: 1rem;
line-height: 1.7;
background-color: transparent;
border: none;
overflow: hidden;
resize: none;
padding: 1.5rem;
min-height: 300px;
}
#editor {
z-index: 2;
color: var(--foreground);
}
#editor:focus { outline: none; }
#editor::placeholder { color: var(--muted-foreground); }
#suggestion-overlay {
z-index: 1;
color: var(--muted-foreground);
pointer-events: none;
}
.status-bar {
text-align: center;
font-size: 0.8rem;
color: var(--muted-foreground);
display: flex;
gap: 0.5rem;
justify-content: center;
}
#status.fetching {
color: var(--foreground);
}