Compare commits
17 Commits
efb4436b00
...
main
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
42864c5491 | ||
|
|
3131fd3531 | ||
|
|
d936ac872a | ||
|
|
019f85a29a | ||
|
|
87c56ba2f8 | ||
| 5bd7ccf76a | |||
| 630d8ebdc0 | |||
| 6f0977be50 | |||
| 86c20628c8 | |||
| 56b4e056c3 | |||
| b5d5195f8f | |||
| e625447222 | |||
| a80fa055af | |||
| cc484dbaed | |||
| 2f6c6a0151 | |||
| f1146ecdcb | |||
| 9d5118f973 |
@@ -1,7 +1,8 @@
|
|||||||
FROM python:3.11-slim
|
FROM python:3.11-slim
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
RUN rm -rf /app/*
|
||||||
COPY requirements.txt .
|
COPY requirements.txt .
|
||||||
RUN pip install --no-cache-dir -r requirements.txt
|
RUN pip install --no-cache-dir -r requirements.txt
|
||||||
COPY . .
|
COPY . .
|
||||||
EXPOSE 8000
|
EXPOSE 8000
|
||||||
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
|
CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000", "--proxy-headers", "--forwarded-allow-ips", "*"]
|
||||||
|
|||||||
48
api.py
48
api.py
@@ -1,13 +1,15 @@
|
|||||||
import os
|
import os
|
||||||
import uvicorn
|
|
||||||
from fastapi import FastAPI, Body
|
|
||||||
from fastapi.staticfiles import StaticFiles
|
|
||||||
from fastapi.responses import FileResponse
|
|
||||||
from pydantic import BaseModel
|
|
||||||
import sys
|
import sys
|
||||||
|
|
||||||
|
import uvicorn
|
||||||
|
from fastapi import Body, FastAPI
|
||||||
|
from fastapi.middleware.cors import CORSMiddleware
|
||||||
|
from fastapi.responses import FileResponse
|
||||||
|
from fastapi.staticfiles import StaticFiles
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
# Import core LLM logic
|
# Import core LLM logic
|
||||||
from llm import load_or_train_model, generate_text, SOURCES_DIR
|
from llm import SOURCES_DIR, generate_text, load_or_train_model
|
||||||
|
|
||||||
# --- Configuration ---
|
# --- Configuration ---
|
||||||
# Models to pre-load on startup
|
# Models to pre-load on startup
|
||||||
@@ -18,19 +20,31 @@ UI_DIR = "ui"
|
|||||||
# Cache for loaded models: {n: model}
|
# Cache for loaded models: {n: model}
|
||||||
MODEL_CACHE = {}
|
MODEL_CACHE = {}
|
||||||
|
|
||||||
|
|
||||||
# --- Pydantic Models ---
|
# --- Pydantic Models ---
|
||||||
class PredictRequest(BaseModel):
|
class PredictRequest(BaseModel):
|
||||||
prompt: str
|
prompt: str
|
||||||
temperature: float = 0.7
|
temperature: float = 1.6
|
||||||
n: int = 3
|
n: int = 4
|
||||||
length: int = 5
|
length: int = 5
|
||||||
|
|
||||||
|
|
||||||
class PredictResponse(BaseModel):
|
class PredictResponse(BaseModel):
|
||||||
prediction: str
|
prediction: str
|
||||||
|
|
||||||
|
|
||||||
# --- FastAPI App ---
|
# --- FastAPI App ---
|
||||||
app = FastAPI()
|
app = FastAPI()
|
||||||
|
|
||||||
|
app.add_middleware(
|
||||||
|
CORSMiddleware,
|
||||||
|
allow_origins=["*"],
|
||||||
|
allow_credentials=True,
|
||||||
|
allow_methods=["*"],
|
||||||
|
allow_headers=["*"],
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
def get_model_for_n(n: int):
|
def get_model_for_n(n: int):
|
||||||
"""
|
"""
|
||||||
Retrieves the model for a specific N from cache, or loads/trains it.
|
Retrieves the model for a specific N from cache, or loads/trains it.
|
||||||
@@ -44,6 +58,7 @@ def get_model_for_n(n: int):
|
|||||||
MODEL_CACHE[n] = model
|
MODEL_CACHE[n] = model
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
|
||||||
@app.on_event("startup")
|
@app.on_event("startup")
|
||||||
def startup_event():
|
def startup_event():
|
||||||
"""
|
"""
|
||||||
@@ -54,6 +69,7 @@ def startup_event():
|
|||||||
get_model_for_n(n)
|
get_model_for_n(n)
|
||||||
print(f"Models for N={PRELOAD_N_GRAMS} loaded. Server is ready.")
|
print(f"Models for N={PRELOAD_N_GRAMS} loaded. Server is ready.")
|
||||||
|
|
||||||
|
|
||||||
@app.post("/api/predict", response_model=PredictResponse)
|
@app.post("/api/predict", response_model=PredictResponse)
|
||||||
async def predict(request: PredictRequest):
|
async def predict(request: PredictRequest):
|
||||||
"""
|
"""
|
||||||
@@ -71,22 +87,34 @@ async def predict(request: PredictRequest):
|
|||||||
model,
|
model,
|
||||||
start_prompt=request.prompt,
|
start_prompt=request.prompt,
|
||||||
length=length,
|
length=length,
|
||||||
temperature=request.temperature
|
temperature=request.temperature,
|
||||||
)
|
)
|
||||||
|
|
||||||
return PredictResponse(prediction=prediction)
|
return PredictResponse(prediction=prediction)
|
||||||
|
|
||||||
|
|
||||||
|
@app.get("/api")
|
||||||
|
async def api_docs():
|
||||||
|
"""
|
||||||
|
API documentation page.
|
||||||
|
"""
|
||||||
|
return FileResponse(os.path.join(UI_DIR, "api.html"))
|
||||||
|
|
||||||
|
|
||||||
# --- Static Files and Root ---
|
# --- Static Files and Root ---
|
||||||
app.mount("/ui", StaticFiles(directory=UI_DIR), name="ui")
|
app.mount("/ui", StaticFiles(directory=UI_DIR), name="ui")
|
||||||
|
|
||||||
|
|
||||||
@app.get("/")
|
@app.get("/")
|
||||||
async def read_root():
|
async def read_root():
|
||||||
return FileResponse(os.path.join(UI_DIR, "index.html"))
|
return FileResponse(os.path.join(UI_DIR, "index.html"))
|
||||||
|
|
||||||
|
|
||||||
def run():
|
def run():
|
||||||
# Read port from environment variable, default to 8000
|
# Read port from environment variable, default to 8000
|
||||||
port = int(os.environ.get("PORT", 8000))
|
port = int(os.environ.get("PORT", 8000))
|
||||||
uvicorn.run(app, host="0.0.0.0", port=port)
|
uvicorn.run(app, host="0.0.0.0", port=port, proxy_headers=True, forwarded_allow_ips="*")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
run()
|
run()
|
||||||
1
icon.svg
Normal file
1
icon.svg
Normal file
@@ -0,0 +1 @@
|
|||||||
|
<svg xmlns="http://www.w3.org/2000/svg" width="24" height="24" viewBox="0 0 24 24" fill="#fafafa"><path d="m12 3-1.912 5.813a2 2 0 0 1-1.275 1.275L3 12l5.813 1.912a2 2 0 0 1 1.275 1.275L12 21l1.912-5.813a2 2 0 0 1 1.275-1.275L21 12l-5.813-1.912a2 2 0 0 1-1.275-1.275L12 3Z"/></svg>
|
||||||
|
After Width: | Height: | Size: 282 B |
390
ui/api.html
Normal file
390
ui/api.html
Normal file
@@ -0,0 +1,390 @@
|
|||||||
|
<!doctype html>
|
||||||
|
<html lang="en" class="dark">
|
||||||
|
<head>
|
||||||
|
<meta charset="UTF-8" />
|
||||||
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||||
|
<title>Kreatyw - API Documentation</title>
|
||||||
|
<link rel="stylesheet" href="/ui/style.css?v=2" />
|
||||||
|
<link rel="icon" type="image/x-icon" href="/ui/favicon.ico" />
|
||||||
|
<style>
|
||||||
|
body {
|
||||||
|
overflow: auto !important;
|
||||||
|
height: auto !important;
|
||||||
|
}
|
||||||
|
.doc-container {
|
||||||
|
max-width: 900px;
|
||||||
|
margin: 0 auto;
|
||||||
|
padding: 3rem 2rem;
|
||||||
|
}
|
||||||
|
.doc-header {
|
||||||
|
margin-bottom: 3rem;
|
||||||
|
border-bottom: 1px solid var(--border);
|
||||||
|
padding-bottom: 2rem;
|
||||||
|
}
|
||||||
|
.doc-header h1 {
|
||||||
|
font-size: 2.5rem;
|
||||||
|
margin: 0 0 0.5rem 0;
|
||||||
|
font-weight: 700;
|
||||||
|
}
|
||||||
|
.doc-header p {
|
||||||
|
color: var(--muted-foreground);
|
||||||
|
font-size: 1.125rem;
|
||||||
|
margin: 0;
|
||||||
|
}
|
||||||
|
.section {
|
||||||
|
margin-bottom: 3rem;
|
||||||
|
}
|
||||||
|
.section h2 {
|
||||||
|
font-size: 1.75rem;
|
||||||
|
margin: 0 0 1rem 0;
|
||||||
|
font-weight: 600;
|
||||||
|
}
|
||||||
|
.section h3 {
|
||||||
|
font-size: 1.25rem;
|
||||||
|
margin: 2rem 0 1rem 0;
|
||||||
|
font-weight: 600;
|
||||||
|
color: var(--muted-foreground);
|
||||||
|
}
|
||||||
|
.section p {
|
||||||
|
line-height: 1.7;
|
||||||
|
color: var(--foreground);
|
||||||
|
margin: 0 0 1rem 0;
|
||||||
|
}
|
||||||
|
.code-block {
|
||||||
|
background-color: var(--secondary);
|
||||||
|
border: 1px solid var(--border);
|
||||||
|
border-radius: var(--radius);
|
||||||
|
padding: 1.5rem;
|
||||||
|
overflow-x: auto;
|
||||||
|
margin: 1rem 0;
|
||||||
|
}
|
||||||
|
.code-block pre {
|
||||||
|
margin: 0;
|
||||||
|
font-family: "SF Mono", "Fira Code", monospace;
|
||||||
|
font-size: 0.875rem;
|
||||||
|
line-height: 1.6;
|
||||||
|
color: var(--foreground);
|
||||||
|
}
|
||||||
|
.inline-code {
|
||||||
|
background-color: var(--secondary);
|
||||||
|
padding: 0.2rem 0.4rem;
|
||||||
|
border-radius: 4px;
|
||||||
|
font-family: "SF Mono", "Fira Code", monospace;
|
||||||
|
font-size: 0.875em;
|
||||||
|
color: var(--foreground);
|
||||||
|
}
|
||||||
|
.param-table {
|
||||||
|
width: 100%;
|
||||||
|
border-collapse: collapse;
|
||||||
|
margin: 1rem 0;
|
||||||
|
}
|
||||||
|
.param-table th,
|
||||||
|
.param-table td {
|
||||||
|
text-align: left;
|
||||||
|
padding: 0.75rem;
|
||||||
|
border-bottom: 1px solid var(--border);
|
||||||
|
}
|
||||||
|
.param-table th {
|
||||||
|
font-weight: 600;
|
||||||
|
color: var(--muted-foreground);
|
||||||
|
font-size: 0.875rem;
|
||||||
|
text-transform: uppercase;
|
||||||
|
letter-spacing: 0.05em;
|
||||||
|
}
|
||||||
|
.param-table td {
|
||||||
|
color: var(--foreground);
|
||||||
|
}
|
||||||
|
.param-table tr:last-child td {
|
||||||
|
border-bottom: none;
|
||||||
|
}
|
||||||
|
.badge {
|
||||||
|
display: inline-block;
|
||||||
|
padding: 0.25rem 0.5rem;
|
||||||
|
border-radius: 4px;
|
||||||
|
font-size: 0.75rem;
|
||||||
|
font-weight: 600;
|
||||||
|
text-transform: uppercase;
|
||||||
|
}
|
||||||
|
.badge-post {
|
||||||
|
background-color: #10b981;
|
||||||
|
color: white;
|
||||||
|
}
|
||||||
|
.badge-required {
|
||||||
|
background-color: #ef4444;
|
||||||
|
color: white;
|
||||||
|
}
|
||||||
|
.badge-optional {
|
||||||
|
background-color: var(--secondary);
|
||||||
|
color: var(--muted-foreground);
|
||||||
|
}
|
||||||
|
.back-link {
|
||||||
|
display: inline-flex;
|
||||||
|
align-items: center;
|
||||||
|
gap: 0.5rem;
|
||||||
|
color: var(--foreground);
|
||||||
|
text-decoration: none;
|
||||||
|
margin-bottom: 2rem;
|
||||||
|
font-weight: 500;
|
||||||
|
transition: opacity 0.2s;
|
||||||
|
}
|
||||||
|
.back-link:hover {
|
||||||
|
opacity: 0.8;
|
||||||
|
}
|
||||||
|
</style>
|
||||||
|
</head>
|
||||||
|
<body>
|
||||||
|
<div class="doc-container">
|
||||||
|
<a href="/" class="back-link">
|
||||||
|
<svg
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
width="20"
|
||||||
|
height="20"
|
||||||
|
viewBox="0 0 24 24"
|
||||||
|
fill="none"
|
||||||
|
stroke="currentColor"
|
||||||
|
stroke-width="2"
|
||||||
|
stroke-linecap="round"
|
||||||
|
stroke-linejoin="round"
|
||||||
|
>
|
||||||
|
<line x1="19" y1="12" x2="5" y2="12"></line>
|
||||||
|
<polyline points="12 19 5 12 12 5"></polyline>
|
||||||
|
</svg>
|
||||||
|
Back to Editor
|
||||||
|
</a>
|
||||||
|
|
||||||
|
<div class="doc-header">
|
||||||
|
<h1>Kreatyw API</h1>
|
||||||
|
<p>Text generation API powered by N-gram language models</p>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="section">
|
||||||
|
<h2>Overview</h2>
|
||||||
|
<p>
|
||||||
|
The Kreatyw API provides a simple REST endpoint for
|
||||||
|
generating text continuations using N-gram language models.
|
||||||
|
The API uses Markov chains trained on source texts to
|
||||||
|
predict and generate coherent text sequences.
|
||||||
|
</p>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="section">
|
||||||
|
<h2>Base URL</h2>
|
||||||
|
<div class="code-block">
|
||||||
|
<pre>https://kreatyw.krzak.org</pre>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="section">
|
||||||
|
<h2>Endpoints</h2>
|
||||||
|
|
||||||
|
<h3>POST /api/predict</h3>
|
||||||
|
<p>Generate text continuation based on a given prompt.</p>
|
||||||
|
|
||||||
|
<h3>Request Body</h3>
|
||||||
|
<table class="param-table">
|
||||||
|
<thead>
|
||||||
|
<tr>
|
||||||
|
<th>Parameter</th>
|
||||||
|
<th>Type</th>
|
||||||
|
<th>Required</th>
|
||||||
|
<th>Description</th>
|
||||||
|
</tr>
|
||||||
|
</thead>
|
||||||
|
<tbody>
|
||||||
|
<tr>
|
||||||
|
<td><span class="inline-code">prompt</span></td>
|
||||||
|
<td>string</td>
|
||||||
|
<td>
|
||||||
|
<span class="badge badge-required"
|
||||||
|
>Required</span
|
||||||
|
>
|
||||||
|
</td>
|
||||||
|
<td>The starting text to continue from</td>
|
||||||
|
</tr>
|
||||||
|
<tr>
|
||||||
|
<td><span class="inline-code">n</span></td>
|
||||||
|
<td>integer</td>
|
||||||
|
<td>
|
||||||
|
<span class="badge badge-optional"
|
||||||
|
>Optional</span
|
||||||
|
>
|
||||||
|
</td>
|
||||||
|
<td>
|
||||||
|
N-gram size (2-5). Default: 4. Higher values
|
||||||
|
produce more coherent but less creative text.
|
||||||
|
</td>
|
||||||
|
</tr>
|
||||||
|
<tr>
|
||||||
|
<td>
|
||||||
|
<span class="inline-code">temperature</span>
|
||||||
|
</td>
|
||||||
|
<td>float</td>
|
||||||
|
<td>
|
||||||
|
<span class="badge badge-optional"
|
||||||
|
>Optional</span
|
||||||
|
>
|
||||||
|
</td>
|
||||||
|
<td>
|
||||||
|
Sampling temperature (0.1-2.0). Default: 1.6.
|
||||||
|
Higher values increase randomness.
|
||||||
|
</td>
|
||||||
|
</tr>
|
||||||
|
<tr>
|
||||||
|
<td><span class="inline-code">length</span></td>
|
||||||
|
<td>integer</td>
|
||||||
|
<td>
|
||||||
|
<span class="badge badge-optional"
|
||||||
|
>Optional</span
|
||||||
|
>
|
||||||
|
</td>
|
||||||
|
<td>
|
||||||
|
Number of words to generate (1-500). Default: 5.
|
||||||
|
</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
|
||||||
|
<h3>Response</h3>
|
||||||
|
<table class="param-table">
|
||||||
|
<thead>
|
||||||
|
<tr>
|
||||||
|
<th>Field</th>
|
||||||
|
<th>Type</th>
|
||||||
|
<th>Description</th>
|
||||||
|
</tr>
|
||||||
|
</thead>
|
||||||
|
<tbody>
|
||||||
|
<tr>
|
||||||
|
<td><span class="inline-code">prediction</span></td>
|
||||||
|
<td>string</td>
|
||||||
|
<td>The generated text continuation</td>
|
||||||
|
</tr>
|
||||||
|
</tbody>
|
||||||
|
</table>
|
||||||
|
|
||||||
|
<h3>Example Request</h3>
|
||||||
|
<div class="code-block">
|
||||||
|
<pre>
|
||||||
|
curl -X POST http://localhost:8000/api/predict \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"prompt": "Kiedyś tak było",
|
||||||
|
"n": 4,
|
||||||
|
"temperature": 1.2,
|
||||||
|
"length": 20
|
||||||
|
}'</pre
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<h3>Example Response</h3>
|
||||||
|
<div class="code-block">
|
||||||
|
<pre>
|
||||||
|
{
|
||||||
|
"prediction": "przezroczyste, że prawie ich dostrzec nie mógł. Słysząc bowiem tyle o jej egzystencji. Zaiste z pogardą arcykapłańskich święceń i źle traktujesz sługi boże."
|
||||||
|
}</pre
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<h3>JavaScript Example</h3>
|
||||||
|
<div class="code-block">
|
||||||
|
<pre>
|
||||||
|
const response = await fetch('/api/predict', {
|
||||||
|
method: 'POST',
|
||||||
|
headers: {
|
||||||
|
'Content-Type': 'application/json'
|
||||||
|
},
|
||||||
|
body: JSON.stringify({
|
||||||
|
prompt: 'Kiedyś tak było',
|
||||||
|
n: 3,
|
||||||
|
temperature: 0.8,
|
||||||
|
length: 15
|
||||||
|
})
|
||||||
|
});
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
console.log(data.prediction);</pre
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<h3>Python Example</h3>
|
||||||
|
<div class="code-block">
|
||||||
|
<pre>
|
||||||
|
import requests
|
||||||
|
|
||||||
|
response = requests.post('http://localhost:8000/api/predict',
|
||||||
|
json={
|
||||||
|
'prompt': 'Kiedyś tak było',
|
||||||
|
'n': 4,
|
||||||
|
'temperature': 1.0,
|
||||||
|
'length': 25
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
result = response.json()
|
||||||
|
print(result['prediction'])</pre
|
||||||
|
>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="section">
|
||||||
|
<h2>Model Parameters</h2>
|
||||||
|
|
||||||
|
<h3>N-gram Size (n)</h3>
|
||||||
|
<p>
|
||||||
|
Controls the context window size. Higher values use more
|
||||||
|
context words to predict the next word:
|
||||||
|
</p>
|
||||||
|
<ul style="line-height: 1.8; color: var(--foreground)">
|
||||||
|
<li>
|
||||||
|
<strong>n=2 (Bigram):</strong> Uses 1 previous word for
|
||||||
|
context. Very creative but less coherent.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>n=3 (Trigram):</strong> Uses 2 previous words.
|
||||||
|
Balanced creativity and coherence.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>n=4 (Tetragram):</strong> Uses 3 previous words.
|
||||||
|
More coherent, less random.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>n=5 (Pentagram):</strong> Uses 4 previous words.
|
||||||
|
Most coherent, closest to training data.
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
|
||||||
|
<h3>Temperature</h3>
|
||||||
|
<p>Controls the randomness of predictions:</p>
|
||||||
|
<ul style="line-height: 1.8; color: var(--foreground)">
|
||||||
|
<li>
|
||||||
|
<strong>Low (0.1-0.5):</strong> More deterministic,
|
||||||
|
picks most likely words.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>Medium (0.6-1.0):</strong> Balanced between
|
||||||
|
predictability and creativity.
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>High (1.1-2.0):</strong> More random and
|
||||||
|
creative, may produce unexpected results.
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
</div>
|
||||||
|
|
||||||
|
<div class="section">
|
||||||
|
<h2>Error Handling</h2>
|
||||||
|
<p>The API returns standard HTTP status codes:</p>
|
||||||
|
<ul style="line-height: 1.8; color: var(--foreground)">
|
||||||
|
<li><strong>200 OK:</strong> Request successful</li>
|
||||||
|
<li>
|
||||||
|
<strong>422 Unprocessable Entity:</strong> Invalid
|
||||||
|
request parameters
|
||||||
|
</li>
|
||||||
|
<li>
|
||||||
|
<strong>500 Internal Server Error:</strong> Server error
|
||||||
|
</li>
|
||||||
|
</ul>
|
||||||
|
</div>
|
||||||
|
</div>
|
||||||
|
</body>
|
||||||
|
</html>
|
||||||
BIN
ui/favicon.ico
Normal file
BIN
ui/favicon.ico
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 103 KiB |
BIN
ui/icon.png
Normal file
BIN
ui/icon.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 42 KiB |
@@ -4,12 +4,58 @@
|
|||||||
<meta charset="UTF-8" />
|
<meta charset="UTF-8" />
|
||||||
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
|
||||||
<title>Kreatyw</title>
|
<title>Kreatyw</title>
|
||||||
<link rel="stylesheet" href="/ui/style.css" />
|
<link rel="stylesheet" href="/ui/style.css?v=2" />
|
||||||
|
|
||||||
|
<link rel="icon" type="image/x-icon" href="/ui/favicon.ico" />
|
||||||
|
|
||||||
|
<meta property="og:type" content="website" />
|
||||||
|
<meta property="og:title" content="Kreatyw" />
|
||||||
|
<meta property="og:description" content="" />
|
||||||
|
<meta property="og:image" content="/ui/icon.png" />
|
||||||
|
<meta name="theme-color" content="#fafafa" />
|
||||||
|
|
||||||
|
<meta name="twitter:card" content="summary" />
|
||||||
|
<meta name="twitter:title" content="Kreatyw" />
|
||||||
|
<meta name="twitter:image" content="/ui/icon.png" />
|
||||||
</head>
|
</head>
|
||||||
<body>
|
<body>
|
||||||
|
<div class="mobile-header">
|
||||||
|
<div class="brand-wrapper">
|
||||||
|
<svg
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
width="24"
|
||||||
|
height="24"
|
||||||
|
viewBox="0 0 24 24"
|
||||||
|
fill="white"
|
||||||
|
class="sparkle-icon"
|
||||||
|
>
|
||||||
|
<path
|
||||||
|
d="m12 3-1.912 5.813a2 2 0 0 1-1.275 1.275L3 12l5.813 1.912a2 2 0 0 1 1.275 1.275L12 21l1.912-5.813a2 2 0 0 1 1.275-1.275L21 12l-5.813-1.912a2 2 0 0 1-1.275-1.275L12 3Z"
|
||||||
|
/>
|
||||||
|
</svg>
|
||||||
|
<h1 class="brand">Kreatyw</h1>
|
||||||
|
</div>
|
||||||
|
<button id="sidebar-toggle" class="btn-icon">
|
||||||
|
<svg
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
width="24"
|
||||||
|
height="24"
|
||||||
|
viewBox="0 0 24 24"
|
||||||
|
fill="none"
|
||||||
|
stroke="currentColor"
|
||||||
|
stroke-width="2"
|
||||||
|
stroke-linecap="round"
|
||||||
|
stroke-linejoin="round"
|
||||||
|
>
|
||||||
|
<line x1="3" y1="12" x2="21" y2="12"></line>
|
||||||
|
<line x1="3" y1="6" x2="21" y2="6"></line>
|
||||||
|
<line x1="3" y1="18" x2="21" y2="18"></line>
|
||||||
|
</svg>
|
||||||
|
</button>
|
||||||
|
</div>
|
||||||
<div class="app-layout">
|
<div class="app-layout">
|
||||||
<aside class="sidebar">
|
<aside class="sidebar" id="sidebar">
|
||||||
<div class="sidebar-header">
|
<div class="sidebar-header desktop-only">
|
||||||
<div class="brand-wrapper">
|
<div class="brand-wrapper">
|
||||||
<svg
|
<svg
|
||||||
xmlns="http://www.w3.org/2000/svg"
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
@@ -98,12 +144,12 @@
|
|||||||
id="editor"
|
id="editor"
|
||||||
spellcheck="false"
|
spellcheck="false"
|
||||||
autofocus
|
autofocus
|
||||||
placeholder="Start writing something poetic..."
|
placeholder="Start typing here..."
|
||||||
></textarea>
|
></textarea>
|
||||||
</div>
|
</div>
|
||||||
</div>
|
</div>
|
||||||
</main>
|
</main>
|
||||||
</div>
|
</div>
|
||||||
<script src="/ui/script.js"></script>
|
<script src="/ui/script.js?v=2"></script>
|
||||||
</body>
|
</body>
|
||||||
</html>
|
</html>
|
||||||
|
|||||||
301
ui/script.js
301
ui/script.js
@@ -1,135 +1,184 @@
|
|||||||
|
document.addEventListener("DOMContentLoaded", () => {
|
||||||
|
const editor = document.getElementById("editor");
|
||||||
|
const suggestionOverlay = document.getElementById("suggestion-overlay");
|
||||||
|
const status = document.getElementById("status");
|
||||||
|
const statusIndicator = document.querySelector(".status-indicator");
|
||||||
|
|
||||||
document.addEventListener('DOMContentLoaded', () => {
|
// Controls
|
||||||
const editor = document.getElementById('editor');
|
const nGramSelect = document.getElementById("n-gram");
|
||||||
const suggestionOverlay = document.getElementById('suggestion-overlay');
|
const nValDisplay = document.getElementById("n-val");
|
||||||
const status = document.getElementById('status');
|
const tempInput = document.getElementById("temperature");
|
||||||
const statusIndicator = document.querySelector('.status-indicator');
|
const tempValDisplay = document.getElementById("temp-val");
|
||||||
|
const lengthInput = document.getElementById("length");
|
||||||
|
const lengthValDisplay = document.getElementById("length-val");
|
||||||
|
const generateBtn = document.getElementById("generate-more-btn");
|
||||||
|
const sidebarToggle = document.getElementById("sidebar-toggle");
|
||||||
|
const sidebar = document.getElementById("sidebar");
|
||||||
|
|
||||||
// Controls
|
let currentSuggestion = "";
|
||||||
const nGramSelect = document.getElementById('n-gram');
|
let isFetching = false;
|
||||||
const nValDisplay = document.getElementById('n-val');
|
let debounceTimer;
|
||||||
const tempInput = document.getElementById('temperature');
|
|
||||||
const tempValDisplay = document.getElementById('temp-val');
|
|
||||||
const lengthInput = document.getElementById('length');
|
|
||||||
const lengthValDisplay = document.getElementById('length-val');
|
|
||||||
const generateBtn = document.getElementById('generate-more-btn');
|
|
||||||
|
|
||||||
let currentSuggestion = '';
|
// --- UI Logic ---
|
||||||
let isFetching = false;
|
|
||||||
let debounceTimer;
|
|
||||||
|
|
||||||
// --- UI Logic ---
|
const updateUI = () => {
|
||||||
|
nValDisplay.textContent = nGramSelect.value;
|
||||||
|
tempValDisplay.textContent = tempInput.value;
|
||||||
|
lengthValDisplay.textContent = lengthInput.value;
|
||||||
|
};
|
||||||
|
|
||||||
const updateUI = () => {
|
sidebarToggle.addEventListener("click", () => {
|
||||||
nValDisplay.textContent = nGramSelect.value;
|
sidebar.classList.toggle("open");
|
||||||
tempValDisplay.textContent = tempInput.value;
|
});
|
||||||
lengthValDisplay.textContent = lengthInput.value;
|
|
||||||
};
|
|
||||||
|
|
||||||
tempInput.addEventListener('input', updateUI);
|
const closeSidebarOnMobile = () => {
|
||||||
lengthInput.addEventListener('input', updateUI);
|
if (window.innerWidth <= 768) {
|
||||||
nGramSelect.addEventListener('change', () => {
|
sidebar.classList.remove("open");
|
||||||
updateUI();
|
}
|
||||||
triggerUpdate();
|
};
|
||||||
});
|
|
||||||
|
|
||||||
const triggerUpdate = () => {
|
tempInput.addEventListener("input", updateUI);
|
||||||
currentSuggestion = '';
|
lengthInput.addEventListener("input", updateUI);
|
||||||
updateSuggestion();
|
nGramSelect.addEventListener("change", () => {
|
||||||
const prompt = editor.value;
|
|
||||||
if (prompt.trim().length > 0) fetchPrediction(prompt);
|
|
||||||
};
|
|
||||||
|
|
||||||
tempInput.addEventListener('change', triggerUpdate);
|
|
||||||
lengthInput.addEventListener('change', triggerUpdate);
|
|
||||||
|
|
||||||
// --- Core Functions ---
|
|
||||||
|
|
||||||
const fetchPrediction = async (prompt, customLength = null) => {
|
|
||||||
if (isFetching) return;
|
|
||||||
|
|
||||||
isFetching = true;
|
|
||||||
status.textContent = 'Thinking...';
|
|
||||||
statusIndicator.classList.add('fetching');
|
|
||||||
|
|
||||||
const n = parseInt(nGramSelect.value);
|
|
||||||
const temperature = parseFloat(tempInput.value);
|
|
||||||
const length = customLength || parseInt(lengthInput.value);
|
|
||||||
|
|
||||||
try {
|
|
||||||
const response = await fetch('/api/predict', {
|
|
||||||
method: 'POST',
|
|
||||||
headers: { 'Content-Type': 'application/json' },
|
|
||||||
body: JSON.stringify({ prompt, n, temperature, length }),
|
|
||||||
});
|
|
||||||
|
|
||||||
if (!response.ok) throw new Error('Network response failed');
|
|
||||||
|
|
||||||
const data = await response.json();
|
|
||||||
|
|
||||||
if (customLength) {
|
|
||||||
insertText(data.prediction || '');
|
|
||||||
} else {
|
|
||||||
currentSuggestion = data.prediction || '';
|
|
||||||
updateSuggestion();
|
|
||||||
}
|
|
||||||
|
|
||||||
} catch (error) {
|
|
||||||
console.error('Prediction failed:', error);
|
|
||||||
status.textContent = 'Error';
|
|
||||||
} finally {
|
|
||||||
isFetching = false;
|
|
||||||
status.textContent = 'Idle';
|
|
||||||
statusIndicator.classList.remove('fetching');
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
const updateSuggestion = () => {
|
|
||||||
const editorText = editor.value;
|
|
||||||
const space = (editorText.length > 0 && !/\s$/.test(editorText)) ? ' ' : '';
|
|
||||||
suggestionOverlay.textContent = editorText + space + currentSuggestion;
|
|
||||||
};
|
|
||||||
|
|
||||||
const insertText = (text) => {
|
|
||||||
if (!text) return;
|
|
||||||
const space = (editor.value.length > 0 && !/\s$/.test(editor.value)) ? ' ' : '';
|
|
||||||
editor.value += space + text;
|
|
||||||
currentSuggestion = '';
|
|
||||||
updateSuggestion();
|
|
||||||
|
|
||||||
// Ensure the editor scrolls with content
|
|
||||||
editor.scrollTop = editor.scrollHeight;
|
|
||||||
};
|
|
||||||
|
|
||||||
// --- Event Handlers ---
|
|
||||||
|
|
||||||
editor.addEventListener('input', () => {
|
|
||||||
clearTimeout(debounceTimer);
|
|
||||||
currentSuggestion = '';
|
|
||||||
updateSuggestion();
|
|
||||||
|
|
||||||
const prompt = editor.value;
|
|
||||||
if (prompt.trim().length === 0) return;
|
|
||||||
debounceTimer = setTimeout(() => fetchPrediction(prompt), 300);
|
|
||||||
});
|
|
||||||
|
|
||||||
editor.addEventListener('keydown', (e) => {
|
|
||||||
if (e.key === 'Tab' && currentSuggestion) {
|
|
||||||
e.preventDefault();
|
|
||||||
insertText(currentSuggestion);
|
|
||||||
fetchPrediction(editor.value);
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
generateBtn.addEventListener('click', () => {
|
|
||||||
fetchPrediction(editor.value, 50);
|
|
||||||
});
|
|
||||||
|
|
||||||
// Sync scroll
|
|
||||||
editor.addEventListener('scroll', () => {
|
|
||||||
suggestionOverlay.scrollTop = editor.scrollTop;
|
|
||||||
});
|
|
||||||
|
|
||||||
// Initialize UI badges
|
|
||||||
updateUI();
|
updateUI();
|
||||||
|
triggerUpdate();
|
||||||
|
});
|
||||||
|
|
||||||
|
const triggerUpdate = () => {
|
||||||
|
currentSuggestion = "";
|
||||||
|
updateSuggestion();
|
||||||
|
const prompt = editor.value;
|
||||||
|
if (prompt.trim().length > 0) fetchPrediction(prompt);
|
||||||
|
};
|
||||||
|
|
||||||
|
tempInput.addEventListener("change", () => {
|
||||||
|
triggerUpdate();
|
||||||
|
});
|
||||||
|
|
||||||
|
lengthInput.addEventListener("change", () => {
|
||||||
|
triggerUpdate();
|
||||||
|
});
|
||||||
|
|
||||||
|
// --- Core Functions ---
|
||||||
|
|
||||||
|
const fetchPrediction = async (prompt, customLength = null) => {
|
||||||
|
if (isFetching) return;
|
||||||
|
|
||||||
|
isFetching = true;
|
||||||
|
status.textContent = "Thinking...";
|
||||||
|
if (statusIndicator) statusIndicator.classList.add("fetching");
|
||||||
|
|
||||||
|
const n = parseInt(nGramSelect.value);
|
||||||
|
const temperature = parseFloat(tempInput.value);
|
||||||
|
const length = customLength || parseInt(lengthInput.value);
|
||||||
|
|
||||||
|
try {
|
||||||
|
const response = await fetch("/api/predict", {
|
||||||
|
method: "POST",
|
||||||
|
headers: { "Content-Type": "application/json" },
|
||||||
|
body: JSON.stringify({ prompt, n, temperature, length }),
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!response.ok) throw new Error("Network response failed");
|
||||||
|
|
||||||
|
const data = await response.json();
|
||||||
|
|
||||||
|
if (customLength) {
|
||||||
|
insertText(data.prediction || "");
|
||||||
|
} else {
|
||||||
|
currentSuggestion = data.prediction || "";
|
||||||
|
updateSuggestion();
|
||||||
|
}
|
||||||
|
} catch (error) {
|
||||||
|
console.error("Prediction failed:", error);
|
||||||
|
status.textContent = "Error: " + error.message;
|
||||||
|
} finally {
|
||||||
|
isFetching = false;
|
||||||
|
status.textContent = "Idle";
|
||||||
|
if (statusIndicator) statusIndicator.classList.remove("fetching");
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const updateSuggestion = () => {
|
||||||
|
suggestionOverlay.innerHTML = "";
|
||||||
|
|
||||||
|
const editorText = editor.value;
|
||||||
|
const space = editorText.length > 0 && !/\s$/.test(editorText) ? " " : "";
|
||||||
|
|
||||||
|
// Create invisible text span to match editor content exactly
|
||||||
|
const textSpan = document.createElement("span");
|
||||||
|
textSpan.textContent = editorText + space;
|
||||||
|
textSpan.style.color = "transparent";
|
||||||
|
suggestionOverlay.appendChild(textSpan);
|
||||||
|
|
||||||
|
if (currentSuggestion) {
|
||||||
|
const suggestionSpan = document.createElement("span");
|
||||||
|
suggestionSpan.textContent = currentSuggestion;
|
||||||
|
suggestionSpan.className = "suggestion-highlight";
|
||||||
|
|
||||||
|
// Add Tab Icon (Better SVG for Tab Key)
|
||||||
|
const iconSpan = document.createElement("span");
|
||||||
|
iconSpan.style.pointerEvents = "none"; // Ensure clicks pass through to suggestionSpan
|
||||||
|
iconSpan.innerHTML = `<svg xmlns="http://www.w3.org/2000/svg" width="16" height="16" viewBox="0 0 24 24" fill="none" stroke="currentColor" stroke-width="2" stroke-linecap="round" stroke-linejoin="round" class="tab-icon"><path d="M21 9V15"/><path d="M3 12H17"/><path d="m14 9 3 3-3 3"/></svg>`;
|
||||||
|
suggestionSpan.appendChild(iconSpan);
|
||||||
|
|
||||||
|
suggestionOverlay.appendChild(suggestionSpan);
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
const insertText = (text) => {
|
||||||
|
if (!text) return;
|
||||||
|
const space =
|
||||||
|
editor.value.length > 0 && !/\s$/.test(editor.value) ? " " : "";
|
||||||
|
editor.value += space + text;
|
||||||
|
currentSuggestion = "";
|
||||||
|
updateSuggestion();
|
||||||
|
|
||||||
|
// Ensure the editor scrolls with content
|
||||||
|
editor.scrollTop = editor.scrollHeight;
|
||||||
|
};
|
||||||
|
|
||||||
|
// --- Event Handlers ---
|
||||||
|
|
||||||
|
editor.addEventListener("input", () => {
|
||||||
|
clearTimeout(debounceTimer);
|
||||||
|
currentSuggestion = "";
|
||||||
|
updateSuggestion();
|
||||||
|
|
||||||
|
const prompt = editor.value;
|
||||||
|
if (prompt.trim().length === 0) return;
|
||||||
|
debounceTimer = setTimeout(() => fetchPrediction(prompt), 300);
|
||||||
|
});
|
||||||
|
|
||||||
|
editor.addEventListener("keydown", (e) => {
|
||||||
|
if (e.key === "Tab" && currentSuggestion) {
|
||||||
|
e.preventDefault();
|
||||||
|
insertText(currentSuggestion);
|
||||||
|
fetchPrediction(editor.value);
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
// Handle click on suggestion
|
||||||
|
suggestionOverlay.addEventListener("click", (e) => {
|
||||||
|
if (e.target.classList.contains("suggestion-highlight")) {
|
||||||
|
insertText(currentSuggestion);
|
||||||
|
fetchPrediction(editor.value);
|
||||||
|
editor.focus();
|
||||||
|
}
|
||||||
|
});
|
||||||
|
|
||||||
|
if (generateBtn) {
|
||||||
|
generateBtn.addEventListener("click", () => {
|
||||||
|
fetchPrediction(editor.value, 50);
|
||||||
|
closeSidebarOnMobile();
|
||||||
|
});
|
||||||
|
}
|
||||||
|
|
||||||
|
// Sync scroll
|
||||||
|
editor.addEventListener("scroll", () => {
|
||||||
|
suggestionOverlay.scrollTop = editor.scrollTop;
|
||||||
|
});
|
||||||
|
|
||||||
|
// Initialize UI badges
|
||||||
|
updateUI();
|
||||||
});
|
});
|
||||||
|
|||||||
175
ui/style.css
175
ui/style.css
@@ -24,18 +24,71 @@
|
|||||||
body {
|
body {
|
||||||
background-color: var(--background);
|
background-color: var(--background);
|
||||||
color: var(--foreground);
|
color: var(--foreground);
|
||||||
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
|
font-family:
|
||||||
|
-apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue",
|
||||||
|
Arial, sans-serif;
|
||||||
margin: 0;
|
margin: 0;
|
||||||
height: 100vh;
|
height: 100vh;
|
||||||
overflow: hidden;
|
overflow: hidden;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
body {
|
||||||
|
height: auto;
|
||||||
|
overflow: auto;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Mobile Header */
|
||||||
|
.mobile-header {
|
||||||
|
display: none;
|
||||||
|
background-color: var(--card);
|
||||||
|
border-bottom: 1px solid var(--border);
|
||||||
|
padding: 0.75rem 1rem;
|
||||||
|
justify-content: space-between;
|
||||||
|
align-items: center;
|
||||||
|
position: sticky;
|
||||||
|
top: 0;
|
||||||
|
z-index: 100;
|
||||||
|
}
|
||||||
|
|
||||||
|
.btn-icon {
|
||||||
|
background: transparent;
|
||||||
|
border: none;
|
||||||
|
color: var(--foreground);
|
||||||
|
cursor: pointer;
|
||||||
|
padding: 0.5rem;
|
||||||
|
display: flex;
|
||||||
|
align-items: center;
|
||||||
|
justify-content: center;
|
||||||
|
}
|
||||||
|
|
||||||
|
.desktop-only {
|
||||||
|
display: block;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.mobile-header {
|
||||||
|
display: flex;
|
||||||
|
}
|
||||||
|
.desktop-only {
|
||||||
|
display: none;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.app-layout {
|
.app-layout {
|
||||||
display: flex;
|
display: flex;
|
||||||
height: 100vh;
|
height: 100vh;
|
||||||
width: 100vw;
|
width: 100vw;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.app-layout {
|
||||||
|
flex-direction: column;
|
||||||
|
height: calc(100vh - 57px); /* Subtract header height */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
/* Sidebar */
|
/* Sidebar */
|
||||||
.sidebar {
|
.sidebar {
|
||||||
width: 300px;
|
width: 300px;
|
||||||
@@ -45,12 +98,35 @@ body {
|
|||||||
flex-direction: column;
|
flex-direction: column;
|
||||||
padding: 1.5rem;
|
padding: 1.5rem;
|
||||||
flex-shrink: 0;
|
flex-shrink: 0;
|
||||||
|
transition: transform 0.3s ease-in-out;
|
||||||
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.sidebar {
|
||||||
|
position: fixed;
|
||||||
|
top: 57px;
|
||||||
|
left: 0;
|
||||||
|
width: 100%;
|
||||||
|
height: calc(100vh - 57px);
|
||||||
|
z-index: 90;
|
||||||
|
transform: translateX(-100%);
|
||||||
|
border-right: none;
|
||||||
|
}
|
||||||
|
.sidebar.open {
|
||||||
|
transform: translateX(0);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
.sidebar-header {
|
.sidebar-header {
|
||||||
margin-bottom: 2.5rem;
|
margin-bottom: 2.5rem;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.sidebar-header {
|
||||||
|
margin-bottom: 1rem;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.brand-wrapper {
|
.brand-wrapper {
|
||||||
display: flex;
|
display: flex;
|
||||||
align-items: center;
|
align-items: center;
|
||||||
@@ -77,6 +153,13 @@ body {
|
|||||||
flex-grow: 1;
|
flex-grow: 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.settings {
|
||||||
|
gap: 1rem;
|
||||||
|
margin-bottom: 1rem;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.setting-item {
|
.setting-item {
|
||||||
display: flex;
|
display: flex;
|
||||||
flex-direction: column;
|
flex-direction: column;
|
||||||
@@ -180,6 +263,12 @@ label {
|
|||||||
border-top: 1px solid var(--border);
|
border-top: 1px solid var(--border);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.sidebar-footer {
|
||||||
|
display: none; /* Hide footer on mobile to save space */
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.status-indicator {
|
.status-indicator {
|
||||||
display: flex;
|
display: flex;
|
||||||
align-items: center;
|
align-items: center;
|
||||||
@@ -202,9 +291,15 @@ label {
|
|||||||
}
|
}
|
||||||
|
|
||||||
@keyframes pulse {
|
@keyframes pulse {
|
||||||
0% { opacity: 1; }
|
0% {
|
||||||
50% { opacity: 0.4; }
|
opacity: 1;
|
||||||
100% { opacity: 1; }
|
}
|
||||||
|
50% {
|
||||||
|
opacity: 0.4;
|
||||||
|
}
|
||||||
|
100% {
|
||||||
|
opacity: 1;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/* Main Editor Area */
|
/* Main Editor Area */
|
||||||
@@ -216,6 +311,14 @@ label {
|
|||||||
background-color: var(--background);
|
background-color: var(--background);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
.editor-main {
|
||||||
|
padding: 1rem;
|
||||||
|
height: 100%;
|
||||||
|
width: 100%;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
.editor-container {
|
.editor-container {
|
||||||
width: 100%;
|
width: 100%;
|
||||||
max-width: 800px;
|
max-width: 800px;
|
||||||
@@ -228,13 +331,14 @@ label {
|
|||||||
border: 1px solid var(--border);
|
border: 1px solid var(--border);
|
||||||
border-radius: var(--radius);
|
border-radius: var(--radius);
|
||||||
background-color: var(--card);
|
background-color: var(--card);
|
||||||
overflow-y: auto;
|
overflow: hidden;
|
||||||
}
|
}
|
||||||
|
|
||||||
#editor, #suggestion-overlay {
|
#editor,
|
||||||
|
#suggestion-overlay {
|
||||||
width: 100%;
|
width: 100%;
|
||||||
height: 100%;
|
height: 100%;
|
||||||
padding: 2rem;
|
padding: 2rem 2rem 10rem 2rem;
|
||||||
font-family: "SF Mono", "Fira Code", monospace;
|
font-family: "SF Mono", "Fira Code", monospace;
|
||||||
font-size: 1.1rem;
|
font-size: 1.1rem;
|
||||||
line-height: 1.8;
|
line-height: 1.8;
|
||||||
@@ -246,20 +350,73 @@ label {
|
|||||||
box-sizing: border-box;
|
box-sizing: border-box;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@media (max-width: 768px) {
|
||||||
|
#editor,
|
||||||
|
#suggestion-overlay {
|
||||||
|
padding: 1rem 1rem 10rem 1rem;
|
||||||
|
font-size: 1rem;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
#editor {
|
#editor {
|
||||||
position: relative;
|
position: relative;
|
||||||
z-index: 2;
|
z-index: 2;
|
||||||
color: var(--foreground);
|
color: var(--foreground);
|
||||||
outline: none;
|
outline: none;
|
||||||
resize: none;
|
resize: none;
|
||||||
|
overflow-y: scroll;
|
||||||
|
}
|
||||||
|
|
||||||
|
#editor::-webkit-scrollbar {
|
||||||
|
width: 16px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#editor::-webkit-scrollbar-thumb {
|
||||||
|
background-color: var(--muted);
|
||||||
|
border: 4px solid var(--card);
|
||||||
|
border-radius: 8px;
|
||||||
|
}
|
||||||
|
|
||||||
|
#editor::-webkit-scrollbar-track {
|
||||||
|
background-color: transparent;
|
||||||
}
|
}
|
||||||
|
|
||||||
#suggestion-overlay {
|
#suggestion-overlay {
|
||||||
position: absolute;
|
position: absolute;
|
||||||
top: 0;
|
top: 0;
|
||||||
left: 0;
|
left: 0;
|
||||||
z-index: 1;
|
z-index: 3;
|
||||||
color: var(--muted-foreground);
|
color: transparent;
|
||||||
pointer-events: none;
|
pointer-events: none;
|
||||||
opacity: 0.5;
|
opacity: 0.5;
|
||||||
|
overflow: hidden;
|
||||||
|
overflow-y: scroll;
|
||||||
|
}
|
||||||
|
|
||||||
|
#suggestion-overlay::-webkit-scrollbar {
|
||||||
|
width: 16px; /* Width must match standard scrollbar width to align text */
|
||||||
|
background: transparent;
|
||||||
|
}
|
||||||
|
|
||||||
|
#suggestion-overlay::-webkit-scrollbar-thumb {
|
||||||
|
background: transparent;
|
||||||
|
}
|
||||||
|
|
||||||
|
.suggestion-highlight {
|
||||||
|
color: var(--muted-foreground);
|
||||||
|
cursor: pointer;
|
||||||
|
pointer-events: auto;
|
||||||
|
}
|
||||||
|
|
||||||
|
.tab-icon {
|
||||||
|
display: inline-block;
|
||||||
|
width: 1.8em;
|
||||||
|
height: 1.2em;
|
||||||
|
vertical-align: middle;
|
||||||
|
margin-left: 0.5em;
|
||||||
|
opacity: 0.8;
|
||||||
|
border: 1px solid var(--muted-foreground);
|
||||||
|
border-radius: 4px;
|
||||||
|
padding: 2px;
|
||||||
|
pointer-events: none;
|
||||||
}
|
}
|
||||||
Reference in New Issue
Block a user